Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Protein & Cell ; (12): 33-46, 2018.
Article in English | WPRIM | ID: wpr-757376

ABSTRACT

The antibody-drug conjugate (ADC), a humanized or human monoclonal antibody conjugated with highly cytotoxic small molecules (payloads) through chemical linkers, is a novel therapeutic format and has great potential to make a paradigm shift in cancer chemotherapy. This new antibody-based molecular platform enables selective delivery of a potent cytotoxic payload to target cancer cells, resulting in improved efficacy, reduced systemic toxicity, and preferable pharmacokinetics (PK)/pharmacodynamics (PD) and biodistribution compared to traditional chemotherapy. Boosted by the successes of FDA-approved Adcetris and Kadcyla, this drug class has been rapidly growing along with about 60 ADCs currently in clinical trials. In this article, we briefly review molecular aspects of each component (the antibody, payload, and linker) of ADCs, and then mainly discuss traditional and new technologies of the conjugation and linker chemistries for successful construction of clinically effective ADCs. Current efforts in the conjugation and linker chemistries will provide greater insights into molecular design and strategies for clinically effective ADCs from medicinal chemistry and pharmacology standpoints. The development of site-specific conjugation methodologies for constructing homogeneous ADCs is an especially promising path to improving ADC design, which will open the way for novel cancer therapeutics.


Subject(s)
Animals , Humans , Amino Acids , Metabolism , Antibodies, Monoclonal , Chemistry , Metabolism , Antigens , Metabolism , Genetic Engineering , Immunoconjugates , Chemistry , Metabolism
2.
Protein & Cell ; (12): 74-85, 2018.
Article in English | WPRIM | ID: wpr-756950

ABSTRACT

Monoclonal antibody (mAb)-based therapeutics are playing an increasingly important role in the treatment or prevention of many important diseases such as cancers, autoimmune disorders, and infectious diseases. Multi-domain mAbs are far more complex than small molecule drugs with intrinsic heterogeneities. The critical quality attributes of a given mAb, including structure, post-translational modifications, and functions at biomolecular and cellular levels, need to be defined and profiled in details during the developmental phases of a biologics. These critical quality attributes, outlined in this review, serve an important database for defining the drug properties during commercial production phase as well as post licensure life cycle management. Specially, the molecular characterization, functional assessment, and effector function analysis of mAbs, are reviewed with respect to the critical parameters and the methods used for obtaining them. The three groups of analytical methods are three essential and integral facets making up the whole analytical package for a mAb-based drug. Such a package is critically important for the licensure and the post-licensure life cycle management of a therapeutic or prophylactic biologics. In addition, the basic principles on the evaluation of biosimilar mAbs were discussed briefly based on the recommendations by the World Health Organization.


Subject(s)
Animals , Humans , Antibodies, Monoclonal , Chemistry , Therapeutic Uses , Biological Products , Therapeutic Uses , Glycosylation , Kinetics , Ligands
3.
Protein & Cell ; (12): 781-789, 2012.
Article in English | WPRIM | ID: wpr-757222

ABSTRACT

Dimerization among the EGFR family of tyrosine kinase receptors leads to allosteric activation of the kinase domains of the partners. Unlike other members in the family, the kinase domain of HER3 lacks key amino acid residues for catalytic activity. As a result, HER3 is suggested to serve as an allosteric activator of other EGFR family members which include EGFR, HER2 and HER4. To study the role of intracellular domains in HER3 dimerization and activation of downstream signaling pathways, we constructed HER3/HER2 chimeric receptors by replacing the HER3 kinase domain (HER3-2-3) or both the kinase domain and the C-terminal tail (HER3-2-2) with the HER2 counterparts and expressed the chimeric receptors in Chinese hamster ovary (CHO) cells. While over expression of the intact human HER3 transformed CHO cells with oncogenic properties such as AKT/ERK activation and increased proliferation and migration, CHO cells expressing the HER3-2-3 chimeric receptor showed significantly reduced HER3/HER2 dimerization and decreased phosphorylation of both AKT and ERK1/2 in the presence of neuregulin-1 (NRG-1). In contrast, CHO cells expressing the HER3-2-2 chimeric receptor resulted in a total loss of downstream AKT activation in response to NRG-1, but maintained partial activation of ERK1/2. The results demonstrate that the intracellular domains play a crucial role in HER3's function as an allosteric activator and its role in downstream signaling.


Subject(s)
Animals , Cricetinae , Humans , Amino Acid Sequence , CHO Cells , Cell Movement , Cell Proliferation , Cricetulus , Extracellular Signal-Regulated MAP Kinases , Metabolism , Intracellular Space , MAP Kinase Signaling System , Models, Molecular , Molecular Sequence Data , Phosphatidylinositol 3-Kinases , Metabolism , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt , Metabolism , Receptor, ErbB-2 , Chemistry , Receptor, ErbB-3 , Chemistry , Genetics , Metabolism , Recombinant Fusion Proteins , Chemistry , Genetics , Metabolism , Signal Transduction
4.
Protein & Cell ; (12): 573-584, 2011.
Article in English | WPRIM | ID: wpr-757064

ABSTRACT

We have previously described a novel artificial NFEV β-secretase (BACE1) cleavage site, which when introduced into the amyloid-β precursor protein (APP), significantly enhances APP cleavage by BACE1 in in vitro and cellular assays. In this study, we describe the identification and characterization of a single chain fragment of variable region (scFv), specific to the EV neo-epitope derived from BACE1 cleavage of the NFEV-containing peptide, and its conversion to IgG1. Both the scFv displayed on phage and EV-IgG1 show exquisite specificity for binding to the EV neoepitope without cross-reactivity to other NFEV containing peptides or WT-APP KMDA cleavage products. EV-IgG1 can detect as little as 0.3 nmol/L of the EV peptide. EV-IgG1 antibody was purified, conjugated with alkaline phosphatase and utilized in various biological assays. In the BACE1 enzymatic assay using NFEV substrate, a BACE1 inhibitor MRK-3 inhibited cleavage with an IC(50) of 2.4 nmol/L with excellent reproducibility. In an APP_NFEV stable SH-SY5Y cellular assay, the EC(50) for inhibition of EV-Aβ peptide secretion with MRK-3 was 236 nmol/L, consistent with values derived using an EV polyclonal antibody. In an APP_NFEV knock-in mouse model, both Aβ_EV40 and Aβ_EV42 peptides in brain homogenate showed excellent gene dosage dependence. In conclusion, the EV neoepitope specific monoclonal antibody is a novel reagent for BACE1 inhibitor discovery for both in vitro, cellular screening assays and in vivo biochemical studies. The methods described herein are generally applicable to novel synthetic substrates and enzyme targets to enable robust screening platforms for enzyme inhibitors.


Subject(s)
Animals , Humans , Mice , Amino Acid Sequence , Amyloid Precursor Protein Secretases , Chemistry , Genetics , Amyloid beta-Protein Precursor , Antibodies , Pharmacology , Brain Chemistry , Disease Models, Animal , Enzyme Inhibitors , Pharmacology , Enzyme-Linked Immunosorbent Assay , Gene Knock-In Techniques , Inhibitory Concentration 50 , Molecular Sequence Data , Single-Chain Antibodies , Pharmacology
5.
Protein & Cell ; (12): 319-330, 2010.
Article in English | WPRIM | ID: wpr-757758

ABSTRACT

The study of antibodies has been a focal point in modern biology and medicine since the early 1900s. However, progress in therapeutic antibody development was slow and intermittent until recently. The first antibody therapy, murine-derived murononab OKT3 for acute organ rejection, was approved by the US Food and Drug Administration (FDA) in 1986, more than a decade after César Milstein and Georges Köhler developed methods for the isolation of mouse monoclonal antibodies from hybridoma cells in 1975. As a result of the scientific, technological, and clinical breakthroughs in the 1980s and 1990s, the pace of therapeutic antibody discovery and development accelerated. Antibodies are becoming a major drug modality with more than two dozen therapeutic antibodies in the clinic and hundreds more in development. Despite the progress, need for improvement exists at every level. Antibody therapeutics provides fertile ground for protein scientists to fulfill the dream of personalized medicine through basic scientific discovery and technological innovation.


Subject(s)
Animals , Humans , Antibodies, Monoclonal , Therapeutic Uses , Biotechnology , Methods , Hybridomas , Metabolism , Immunotherapy , Methods , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL